EfdClient¶
-
class
lsst_efd_client.
EfdClient
(efd_name, db_name='efd', port='443', creds_service='https://roundtable.lsst.codes/segwarides/', client=None, convert_influx_index=False)¶ Bases:
object
Class to handle connections and basic queries
Parameters: - efd_name :
str
Name of the EFD instance for which to retrieve credentials.
- db_name :
str
, optional Name of the database within influxDB to query (‘efd’ by default).
- port :
str
, optional Port to use when querying the database (‘443’ by default).
- creds_service :
str
, optional URL to the service to retrieve credentials (
https://roundtable.lsst.codes/segwarides/
by default).- client :
object
, optional An instance of a class that ducktypes as
aioinflux.InfluxDBClient
. The intent is to be able to substitute a mocked client for testing.- convert_influx_index :
bool
, optional Convert influxDB time index from TAI to UTC? This is for using legacy instances that may still have timestamps stored internally as TAI. Modern instances all store index timestamps as UTC natively. Default is
False
, don’t translate from TAI to UTC.
Attributes Summary
deployment
influx_client
The aioinflux.client.InfluxDBClient
used for queries.subclasses
Methods Summary
build_time_range_query
(topic_name, fields, …)Build a query based on a time range. from_name
(efd_name, *args, **kwargs)Construct a client for the specific named subclass. get_fields
(topic_name)Query the list of field names for a topic. get_schema
(topic)Givent a topic, get a list of dictionaries describing the fields get_topics
()Query the list of possible topics. list_efd_names
([creds_service])List all valid names for EFD deployments available. select_packed_time_series
(topic_name, …[, …])Select fields that are time samples and unpack them into a dataframe. select_time_series
(topic_name, fields, …)Select a time series for a set of topics in a single subsystem select_top_n
(topic_name, fields, num[, …])Select the most recent N samples from a set of topics in a single subsystem. Attributes Documentation
-
deployment
= ''¶
-
influx_client
= None¶ The
aioinflux.client.InfluxDBClient
used for queries.This should be used to execute queries not wrapped by this class.
-
subclasses
= {}¶
Methods Documentation
-
build_time_range_query
(topic_name, fields, start, end, is_window=False, index=None)¶ Build a query based on a time range.
Parameters: - topic_name :
str
Name of topic for which to build a query.
- fields :
str
orlist
Name of field(s) to query.
- start :
astropy.time.Time
Start time of the time range, if
is_window
is specified, this will be the midpoint of the range.- end :
astropy.time.Time
orastropy.time.TimeDelta
End time of the range either as an absolute time or a time offset from the start time.
- is_window :
bool
, optional If set and the end time is specified as a
TimeDelta
, compute a range centered on the start time (default isFalse
).- index :
int
, optional For indexed topics set this to the index of the topic to query (default is
None
).
Returns: - query :
str
A string containing the constructed query statement.
- topic_name :
-
from_name
(efd_name, *args, **kwargs)¶ Construct a client for the specific named subclass.
Parameters: - efd_name :
str
Name of the EFD instance for which to construct a client.
- *args
Extra arguments to pass to the subclass constructor.
- **kwargs
Extra keyword arguments to pass to the subclass constructor.
Raises: - NotImpementedError
Raised if there is no subclass corresponding to the name.
- efd_name :
-
get_fields
(topic_name)¶ Query the list of field names for a topic.
Parameters: - topic_name :
str
Name of topic to query for field names.
Returns: - results :
list
List of field names in specified topic.
- topic_name :
-
get_schema
(topic)¶ Givent a topic, get a list of dictionaries describing the fields
Parameters: - topic :
str
The name of the topic to query. A full list of valid topic names can be obtained using
get_schema_topics
.
Returns: - result :
Pandas.DataFrame
A dataframe with the schema information for the topic. One row per field.
- topic :
-
get_topics
()¶ Query the list of possible topics.
Returns: - results :
list
List of valid topics in the database.
- results :
-
classmethod
list_efd_names
(creds_service='https://roundtable.lsst.codes/segwarides/')¶ List all valid names for EFD deployments available.
Parameters: - creds_service :
str
, optional
Returns: - creds_service :
-
select_packed_time_series
(topic_name, base_fields, start, end, is_window=False, index=None, ref_timestamp_col='cRIO_timestamp')¶ Select fields that are time samples and unpack them into a dataframe.
Parameters: - topic_name :
str
Name of topic to query.
- base_fields :
str
orlist
Base field name(s) that will be expanded to query all vector entries.
- start :
astropy.time.Time
Start time of the time range, if
is_window
is specified, this will be the midpoint of the range.- end :
astropy.time.Time
orastropy.time.TimeDelta
End time of the range either as an absolute time or a time offset from the start time.
- is_window :
bool
, optional If set and the end time is specified as a
TimeDelta
, compute a range centered on the start time (default isFalse
).- index :
int
, optional For indexed topics set this to the index of the topic to query (default is
False
).- ref_timestamp_col :
str
, optional Name of the field name to use to assign timestamps to unpacked vector fields (default is ‘cRIO_timestamp’).
Returns: - result :
pandas.DataFrame
A
pandas.DataFrame
containing the results of the query.
- topic_name :
-
select_time_series
(topic_name, fields, start, end, is_window=False, index=None)¶ Select a time series for a set of topics in a single subsystem
Parameters: - topic_name :
str
Name of topic to query.
- fields :
str
orlist
Name of field(s) to query.
- start :
astropy.time.Time
Start time of the time range, if
is_window
is specified, this will be the midpoint of the range.- end :
astropy.time.Time
orastropy.time.TimeDelta
End time of the range either as an absolute time or a time offset from the start time.
- is_window :
bool
, optional If set and the end time is specified as a
TimeDelta
, compute a range centered on the start time (default isFalse
).- index :
int
, optional For indexed topics set this to the index of the topic to query (default is
None
).
Returns: - result :
pandas.DataFrame
A
pandas.DataFrame
containing the results of the query.
- topic_name :
-
select_top_n
(topic_name, fields, num, time_cut=None, index=None)¶ Select the most recent N samples from a set of topics in a single subsystem. This method does not guarantee sort direction of the returned rows.
Parameters: - topic_name :
str
Name of topic to query.
- fields :
str
orlist
Name of field(s) to query.
- num :
int
Number of rows to return.
- time_cut :
astropy.time.Time
, optional Use a time cut instead of the most recent entry. (default is
None
)- index :
int
, optional For indexed topics set this to the index of the topic to query (default is
None
)
Returns: - result :
pandas.DataFrame
A
pandas.DataFrame
containing teh results of the query.
- topic_name :
- efd_name :