EfdClient¶
- class lsst_efd_client.EfdClient(efd_name, db_name='efd', port='443', creds_service='https://roundtable.lsst.codes/segwarides/', client=None)¶
Bases:
object
Class to handle connections and basic queries
- Parameters
- efd_name
str
Name of the EFD instance for which to retrieve credentials.
- db_name
str
, optional Name of the database within influxDB to query (‘efd’ by default).
- port
str
, optional Port to use when querying the database (‘443’ by default).
- creds_service
str
, optional URL to the service to retrieve credentials (
https://roundtable.lsst.codes/segwarides/
by default).- client
object
, optional An instance of a class that ducktypes as
aioinflux.InfluxDBClient
. The intent is to be able to substitute a mocked client for testing.
- efd_name
Attributes Summary
The
aioinflux.client.InfluxDBClient
used for queries.Methods Summary
build_time_range_query
(topic_name, fields, ...)Build a query based on a time range.
from_name
(efd_name, *args, **kwargs)Construct a client for the specific named subclass.
get_fields
(topic_name)Query the list of field names for a topic.
get_schema
(topic)Givent a topic, get a list of dictionaries describing the fields
Query the list of possible topics.
list_efd_names
([creds_service])List all valid names for EFD deployments available.
select_packed_time_series
(topic_name, ...[, ...])Select fields that are time samples and unpack them into a dataframe.
select_time_series
(topic_name, fields, ...)Select a time series for a set of topics in a single subsystem
select_top_n
(topic_name, fields, num[, ...])Select the most recent N samples from a set of topics in a single subsystem.
Attributes Documentation
- deployment = ''¶
- influx_client = None¶
The
aioinflux.client.InfluxDBClient
used for queries.This should be used to execute queries not wrapped by this class.
- subclasses = {}¶
Methods Documentation
- build_time_range_query(topic_name, fields, start, end, is_window=False, index=None)¶
Build a query based on a time range.
- Parameters
- topic_name
str
Name of topic for which to build a query.
- fields
str
orlist
Name of field(s) to query.
- start
astropy.time.Time
Start time of the time range, if
is_window
is specified, this will be the midpoint of the range.- end
astropy.time.Time
orastropy.time.TimeDelta
End time of the range either as an absolute time or a time offset from the start time.
- is_window
bool
, optional If set and the end time is specified as a
TimeDelta
, compute a range centered on the start time (default isFalse
).- index
int
, optional For indexed topics set this to the index of the topic to query (default is
None
).
- topic_name
- Returns
- query
str
A string containing the constructed query statement.
- query
- from_name(efd_name, *args, **kwargs)¶
Construct a client for the specific named subclass.
- Parameters
- efd_name
str
Name of the EFD instance for which to construct a client.
- *args
Extra arguments to pass to the subclass constructor.
- **kwargs
Extra keyword arguments to pass to the subclass constructor.
- efd_name
- Raises
- NotImpementedError
Raised if there is no subclass corresponding to the name.
- async get_fields(topic_name)¶
Query the list of field names for a topic.
- async get_schema(topic)¶
Givent a topic, get a list of dictionaries describing the fields
- Parameters
- topic
str
The name of the topic to query. A full list of valid topic names can be obtained using
get_schema_topics
.
- topic
- Returns
- result
Pandas.DataFrame
A dataframe with the schema information for the topic. One row per field.
- result
- async get_topics()¶
Query the list of possible topics.
- Returns
- results
list
List of valid topics in the database.
- results
- classmethod list_efd_names(creds_service='https://roundtable.lsst.codes/segwarides/')¶
List all valid names for EFD deployments available.
- async select_packed_time_series(topic_name, base_fields, start, end, is_window=False, index=None, ref_timestamp_col='cRIO_timestamp', ref_timestamp_fmt='unix_tai', ref_timestamp_scale='tai')¶
Select fields that are time samples and unpack them into a dataframe.
- Parameters
- topic_name
str
Name of topic to query.
- base_fields
str
orlist
Base field name(s) that will be expanded to query all vector entries.
- start
astropy.time.Time
Start time of the time range, if
is_window
is specified, this will be the midpoint of the range.- end
astropy.time.Time
orastropy.time.TimeDelta
End time of the range either as an absolute time or a time offset from the start time.
- is_window
bool
, optional If set and the end time is specified as a
TimeDelta
, compute a range centered on the start time (default isFalse
).- index
int
, optional For indexed topics set this to the index of the topic to query (default is
False
).- ref_timestamp_col
str
, optional Name of the field name to use to assign timestamps to unpacked vector fields (default is ‘cRIO_timestamp’).
- ref_timestamp_fmt
str
, optional Format to use to translating
ref_timestamp_col
values (default is ‘unix_tai’).- ref_timestamp_scale
str
, optional Time scale to use in translating
ref_timestamp_col
values (default is ‘tai’).
- topic_name
- Returns
- result
pandas.DataFrame
A
pandas.DataFrame
containing the results of the query.
- result
- async select_time_series(topic_name, fields, start, end, is_window=False, index=None, convert_influx_index=False)¶
Select a time series for a set of topics in a single subsystem
- Parameters
- topic_name
str
Name of topic to query.
- fields
str
orlist
Name of field(s) to query.
- start
astropy.time.Time
Start time of the time range, if
is_window
is specified, this will be the midpoint of the range.- end
astropy.time.Time
orastropy.time.TimeDelta
End time of the range either as an absolute time or a time offset from the start time.
- is_window
bool
, optional If set and the end time is specified as a
TimeDelta
, compute a range centered on the start time (default isFalse
).- index
int
, optional For indexed topics set this to the index of the topic to query (default is
None
).- convert_influx_index
bool
, optional Convert influxDB time index from TAI to UTC? This is for using legacy instances that may still have timestamps stored internally as TAI. Modern instances all store index timestamps as UTC natively. Default is
False
, don’t translate from TAI to UTC.
- topic_name
- Returns
- result
pandas.DataFrame
A
pandas.DataFrame
containing the results of the query.
- result
- async select_top_n(topic_name, fields, num, time_cut=None, index=None, convert_influx_index=False)¶
Select the most recent N samples from a set of topics in a single subsystem. This method does not guarantee sort direction of the returned rows.
- Parameters
- topic_name
str
Name of topic to query.
- fields
str
orlist
Name of field(s) to query.
- num
int
Number of rows to return.
- time_cut
astropy.time.Time
, optional Use a time cut instead of the most recent entry. (default is
None
)- index
int
, optional For indexed topics set this to the index of the topic to query (default is
None
)- convert_influx_index
bool
, optional Convert influxDB time index from TAI to UTC? This is for using legacy instances that may still have timestamps stored internally as TAI. Modern instances all store index timestamps as UTC natively. Default is
False
, don’t translate from TAI to UTC.
- topic_name
- Returns
- result
pandas.DataFrame
A
pandas.DataFrame
containing teh results of the query.
- result